Cantitate/Preț
Produs

Membrane Materials for Gas and Vapor Separation – Synthesis and Application of Silicon–Containing Polymers

Autor Y Yampolskii
en Limba Engleză Hardback – 3 mar 2017
Si containing polymers have been instrumental in the development of membrane gas separation practices since the early 1970s. Their function is to provide a selective barrier for different molecular species, where selection takes place either on the basis of size or on the basis of physical interactions or both. * Combines membrane science, organosilicon chemistry, polymer science, materials science, and physical chemistry * Only book to consider polymerization chemistry and synthesis of Si-containing polymers (both glassy and rubbery), and their role as membrane materials * Membrane operations present environmental benefits such as reduced waste, and recovered/recycled valuable raw materials that are currently lost to fuel or to flares
Citește tot Restrânge

Preț: 64047 lei

Preț vechi: 102505 lei
-34%

Puncte Express: 961

Preț estimativ în valută:
12270 13322$ 10523£

Carte indisponibilă temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781119112716
ISBN-10: 1119112710
Pagini: 440
Dimensiuni: 177 x 251 x 27 mm
Greutate: 0.84 kg
Editura: Wiley
Locul publicării:Chichester, United Kingdom

Public țintă

Researchers and advanced students working in membrane science, organosilicon chemistry, polymer science and physical chemistry. Also those in related areas e.g. materials science

Cuprins

Contributors xi Preface xv 1 Permeability of Polymers 1 Yuri Yampolskii 1.1 Introduction 1 1.2 Detailed mechanism of sorption and transport 3 1.2.1 Transition-state model 3 1.2.2 Free volume model 4 1.2.3 Sorption isotherms 5 1.3 Concentration dependence of permeability and diffusion coefficients 6 1.4 Effects of properties of gases and polymers on permeation parameters 10 Acknowledgement 13 References 13 2 Organosiloxanes (Silicones), Polyorganosiloxane Block Copolymers: Synthesis, Properties, and Gas Permeation Membranes Based on Them 17 Igor Raygorodsky, Victor Kopylov, and Alexander Kovyazin 2.1 Introduction 17 2.2 Synthesis and transformations of organosiloxanes 17 2.2.1 Polyorganosiloxanes with aminoalkyl groups at silicon 19 2.2.2 Organosilicon alcohols and phenols 21 2.3 Synthesis of polyorganosiloxane block copolymers 23 2.3.1 Polyester(ether)-polyorganosiloxane block copolymers 24 2.3.2 Synthesis of polyurethane-, polyurea-, polyamide-, polyimide- organosiloxane POBCs 25 2.4 Properties of polyorganosiloxane block copolymers 29 2.4.1 Phase state of polyblock organosiloxane copolymers 29 2.5 Morphology of POBCs and its effects on their diffusion properties 30 2.5.1 Types of heterogeneous structure 30 2.6 Some representatives of POBC as membrane materials and their properties 32 2.6.1 Polycarbonate-polysiloxanes 32 2.6.2 Polyurethane(urea)-polysiloxanes 39 2.6.3 Polyimide(amide)-polysiloxanes 42 2.7 Conclusions 45 References 46 3 Polysilalkylenes 53 Nikolay V. Ushakov, Stepan Guselnikov, and Eugene Finkelshtein Acknowledgement 65 References 65 4 Polyvinylorganosilanes: The Materials for Membrane Gas Separation 69 Nikolay V. Ushakov 4.1 Introduction: Historical background 69 4.2 Syntheses and polymerization of vinyltriorganosilanes 71 4.2.1 Syntheses of vinyltriorganosilanes 71 4.2.2 Vinyltriorganosilane (VTOS) polymerization 73 4.3 Physico-chemical and membrane properties of polymeric PVTOS materials 88 4.4 Concluding remarks 94 Acknowledgement 95 References 95 5 Substituted Polyacetylenes 107 Toshikazu Sakaguchi, Yanming Hu, and Toshio Masuda 5.1 Introduction 107 5.2 Poly(1-trimethylsilyl-1-propyne) (PTMSP) and related polymers 110 5.2.1 Synthesis and general properties 110 5.2.2 Permeation of gases and liquids 112 5.2.3 Aging effect and cross-linking 114 5.2.4 Free volume 115 5.2.5 Nanocomposites and hybrids 116 5.3 Poly[1-phenyl-2-(p-trimethylsilylphenyl)acetylene] and related polymers 117 5.3.1 Polymer synthesis 118 5.3.2 Gas separation 121 5.4 Desilylated polyacetylenes 124 5.4.1 Desilylation of poly[1(p-trimethylsilylphenyl)-2-phenylacetylene] 124 5.4.2 PDPAs from precursor polymers with various silyl groups 125 5.4.3 Soluble poly(diphenylacetylene)s obtained by desilylation 127 5.4.4 Poly(diarylacetylene)s 128 5.5 Polar-group-containing polyacetylenes 130 5.5.1 Hydroxy group 130 5.5.2 Sulfonated and nitrated poly(diphenylacetylene)s 132 5.5.3 Other polar groups 134 5.6 Concluding remarks 135 References 136 6 Polynorbornenes 143 Eugene Finkelshtein, Maria Gringolts, Maksim Bermeshev, Pavel Chapala, and Yulia Rogan 6.1 Introduction 143 6.2 Monomer synthesis 144 6.2.1 Synthesis of silicon-substituted norbornenes and norbornadienes 145 6.2.2 Synthesis of Si-containing exo-tricyclo[4.2.1.02,5]non-7-enes 152 6.3 Metathesis polynorbornenes 163 6.4 Addition polymerization 183 6.4.1 Addition polynorbornenes and polynorbornenes with alkyl side groups 184 6.4.2 Silicon and germanium-substituted polynorbornenes 187 6.4.3 Composites with addition silicon-containing polytricyclononenes 205 6.5 Conclusions 209 Acknowledgement 210 References 210 7 Polycondensation Materials Containing Bulky Side Groups: Synthesis and Transport Properties 223 Susanta Banerjee and Debaditya Bera 7.1 Introduction 223 7.2 Synthesis of the polymers 224 7.2.1 Polyimides 224 7.2.2 Poly(arylene ether)s (PAEs) 227 7.2.3 Aromatic polyamides (PAs) 228 7.3 Effect of different bulky groups on polymer gas transport properties 229 7.3.1 Gas transport properties of the polyimides containing different bulky groups 229 7.3.2 Gas transport properties of polyamides containing different bulky groups 241 7.3.3 Gas transport properties of poly(arylene ether)s containing different bulky groups 248 7.3.4 Concluding remarks 263 References 265 8 Gas and Vapor Transport Properties of Si-Containing and Related Polymers 271 Yuri Yampolskii 8.1 Introduction 271 8.2 Rubbery Si-containing polymers 272 8.2.1 Polysiloxanes 272 8.2.2 Siloxane-containing copolymers (block copolymers, random copolymers and graft copolymers) 274 8.2.3 Polysilmethylenes 277 8.3 Glassy Si-containing polymers 278 8.3.1 Polymers with Si-O-Si bonds in side chains 278 8.3.2 Poly(vinyltrimethyl silane) and related vinylic polymers 282 8.3.3 Metathesis norbornene polymers 285 8.3.4 Additive norbornene polymers 286 8.3.5 Polyacetylenes 290 8.3.6 Other glassy Si-containing polymers 293 8.4 Free volume in Si-containing polymers 294 8.5 Concluding remarks 296 Acknowledgement 298 References 298 9 Modeling of Si-Containing Polymers 307 Joel R. Fried, Timothy Dubbs, and Morteza Azizi 9.1 Introduction 307 9.2 Main-chain silicon-containing polymers 309 9.2.1 Polysiloxanes 309 9.2.2 Polysilanes and silalkylene polymers 314 9.3 Side-chain silicon-containing polymers 316 9.3.1 Poly(vinyltrimethylsilane) 316 9.3.2 Poly[1-(trimethylsilyl)-1-propyne] 317 9.4 Conclusions 324 Appendices 325 9.A Molecular flexibility 325 9.B Simulation of diffusivity 325 9.B.1 Einstein relationship 325 9.B.2 VACF method 325 9.C Simulation of solubility: Widom method 325 9.D Molecular mechanics force fields 326 9.D.1 DREIDING 326 9.D.2 Polymer-consistent force field (pcff ) 326 9.D.3 GROMOS 326 9.D.4 COMPASS 326 References 327 10 Pervaporation and Evapomeation with Si-Containing Polymers 335 Tadashi Uragami 10.1 Introduction 335 10.2 Structural design of Si-containing polymer membranes 335 10.2.1 Chemical design of Si-containing polymer membrane materials 336 10.2.2 Physical construction of Si-containing polymer membranes 336 10.3 Pervaporation 337 10.3.1 Principle of pervaporation 337 10.3.2 Fundamentals of pervaporation 338 10.3.3 Solution-diffusion model in pervaporation 339 10.4 Evapomeation 340 10.4.1 Principle of evapomeation 340 10.4.2 Principle of temperature-difference controlled evapomeation 341 10.5 Technology of pervaporation with Si-containing polymer membranes 342 10.5.1 Alcohol permselective membranes 342 10.5.2 Hydrocarbon permselective membranes 353 10.5.3 Organic permselective membranes 360 10.5.4 Membranes for separation of organic-organic mixtures 361 10.5.5 Membranes for optical resolution 362 10.6 Technology of evapomeation with Si-containing polymer membranes 363 10.6.1 Permeation and separation by evapomeation 363 10.6.2 Concentration of ethanol by temperature-difference controlled evapomeation 364 10.7 Conclusions 365 References 365 11 Si-Containing Polymers in Membrane Gas Separation 373 Adele Brunetti, Leonardo Melone, Enrico Drioli, and Giuseppe Barbieri Executive summary 373 11.1 Introduction 373 11.2 Si-containing polymer membranes used in gas separation 375 11.2.1 Silicon rubber membrane materials 375 11.2.2 Polyacetylene membrane materials 376 11.2.3 Polynorbornene membrane materials 378 11.2.4 Other Si-containing membrane materials 378 11.3 Separations 379 11.4 Membrane modules 381 11.5 Competing technologies for separation of gases 384 11.6 Applications 385 11.6.1 Air separation 385 11.6.2 Hydrogen separation 386 11.6.3 Hydrocarbon separation 390 11.6.4 VOC separation 392 References 393 Index 399

Descriere

Si containing polymers have been instrumental in the development of membrane gas separation practices since the early 1970s. Their function is to provide a selective barrier for different molecular species, where selection takes place either on the basis of size or on the basis of physical interactions or both.